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Abstract Access control is one of the most common and versatile mechanisms used
for information systems security enforcement. An access control model formally
describes how to decide whether an access request should be granted or denied.
Since the role-based access control initiative has been proposed in the 90s, several
access control models have been studied in the literature. An access control policy is
an instance of a model. It defines the set of basic facts used in the decision process.
Policies must satisfy a set of constraints defined in the model, which reflect some
high level organization requirements. First-order logic has been advocated for some
time as a suitable framework for access control models. Many frameworks have been
proposed, focusing mainly on expressing complex access control models. However,
though formally expressed, constraints are not defined in a unified language that
could lead to some well-founded and generic enforcement procedures. Therefore,
we make a clear distinction by proposing a logical framework focusing primarily on
constraints, while keeping as much as possible a unified way of expressing constraints,
policies, models, and reference monitors. This framework is closely tied to relational
database integrity models. We then show how to use well-founded procedures in
order to enforce and check constraints. Without requiring any rewriting previous to
the inference process, these procedures provide clean and intuitive debugging traces
for administrators. This approach is a step toward bridging the gap between general
but hard to maintain formalisms and effective but insufficiently general ones.
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1 Introduction

1.1 Access control models, policies and constraints

Security policies are sets of laws and rules governing the security of organizations.
They can cover areas from internal organizations rules to national laws, from struc-
tural (e.g., fire protection) to organizational aspects (e.g., emergency phone lines).
An Access Control (ac) (or authorization) policy is a specialized form of security
policy, dedicated to permission management. ac aims at enforcing confidentiality
and data integrity.

Within information systems, an ac policy is structured according to an ac model,
which formally describes the structure of the policy. A model defines how to decide
whether an access request (i.e., an action on an object issued by a subject pertaining
to a user) should be granted or denied using a set of rules. For instance, in the
Role-Based Access Control (Rbac) models family, roles are assigned to users, and
permissions are assigned to roles (Sandhu et al. 1996; Ferraiolo et al. 2003). An
Rbac policy is a set of assignments between users and roles and between roles and
permissions. The core rule of the Rbac models family states that an access request is
granted if and only if the issuer endorses a role with this privilege.

Since the Rbac initiative, several models have been studied in the literature. These
models have extended Rbac (e.g., Generalized-Temporal-Rbac (Joshi et al. 2005)
or Geographical-Rbac (Damiani et al. 2007)), and have organized policies by addi-
tional concepts to enhance their expressive power and flexibility (e.g., Workflow-
Rbac (Wainer et al. 2003, 2007), Team-Bac (Thomas 1997), Task-Bac (Thomas
and Sandhu 1997), Organization-Bac (Miège 2005)). Throughout these propositions,
First-Order Logic (Fol) has been advocated as a general framework suitable to
formalize ac models and policies.

In addition to innovative concepts and relations (e.g., roles and hierarchies) for
organizing policies, ac models have integrated the concept of constraints. Constraints
reflect some high level organization requirements that must be enforced within
policies. With the development of ac models, several kinds of constraints have been
defined. The most prominent one is the mutual exclusion, which has been proposed in
order to enforce separation of duties (Li et al. 2004). Other kinds of constraints have
been defined: some mutual exclusion variants, prerequisite constraints or constraints
over hierarchies (Crampton 2003; Jaeger and Tidswell 2001).

Actually, constraints may express different requirements on policies. Generally
speaking, constraints are policy properties that can be classified in the following basic
classes:

– (conditional) absence of values (e.g., mutual exclusion),
– (conditional) existence of (constrained) values (e.g., prerequisite),
– (conditional) uniqueness of values (e.g., uniqueness of ancestor in a hierarchy).

These different classes of constraints share a common objective, which is to restrict
the set of policies expressible over a model to the set of consistent ones. For instance,
in the Rbac setting, the definition of roles a and b as mutually exclusive means that
no user should be assigned to a and b . Thus, the set of expressible policies is restricted
to the set of policies in which no user is assigned to both a and b .
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1.2 Problem statement and contribution

Constraints attempt to ensure that policies are consistent. Verifying the consistency
of policies is a paramount task. Indeed an inconsistent policy can lead to an
unexpected behaviour of the ac system that may completely ruin the benefits of the
ac system:

– illegitimate access: exclusion constraints aim at ensuring that some activities are
carried out by different users, for instance to prevent that the same user from
initiating a payment and authorizing a payment. If a policy does not satisfy the
exclusion constraints, one unique user may be able to circumvent the separation
of duties and gain unlegitimate access,

– deny of legitimate access: conversely, a constraint can express that every user
has the right to log into the system. Failing to verify such a constraint may lead
to users to be unable to do anything,

– difference between expected behaviour and real behaviour: some constraints
are implicitly expected from a model. For instance, when dealing with a role
hierarchy, it is relevant and quite natural to prevent graph cycles. Failing to verify
such constraint may lead to circular inheritance that implies that all the roles have
the same set of permissions. Moreover, in a Rbac setting, such a set would be the
union of all permissions assigned to at least one role in the cycle,

– unpredictable behaviour: in the worst case, if core constraints like basic integrity
requirements of policy (e.g., uniqueness of user related to a subject) are not
satisfied, the whole system may be compromised.

In order to express these constraints in an homogeneous way, a formal language
able to handle broad classes of constraints is necessary. It should allow the definition
of new classes of constraints and should be able to capture general integrity require-
ments of ac models. This language must have clear semantics, and provide well-
founded automated proof procedures for consistency checking.

To address these issues we adopt a top-down approach, starting with a framework
focusing primarily on constraints. This framework relies on database integrity theory.
We have chosen to present it in a logical setting, but other formalisms, such as
tableaux, could have been used. ac models and policies are then formally defined
using one of the Datalog languages, which is also a fragment of the database
integrity language. This interesting property allows for expressing the whole ac
system, including models, policies and constraints, in a single and homogeneous
framework. ac models foundations and semantics are described in Section 2. Without
being universal, the obtained framework can still express several classical models and
extensions found in the literature.

We then define ac constraints in Section 3. We make use of relational data
dependencies, in order to model ac constraints. Dependencies are able to capture
complex integrity requirements in an homogeneous way. For instance, one of the
properties considered as fundamental in the Rbac standard (Ferraiolo et al. 2003,
property 3.2, p. 60) (this property is quoted in Section 3.5) can be modelled by means
of data dependencies. To the best of our knowledge, the property (3.2) has not been
modelled and taken into account in any other logical framework for ac.
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In Section 4, we define a set of well-founded operations that can be used to
help ac models designers and policy administrators in making constraints design and
administration easier. These operations are generic and can be used over any model
built upon the structure defined in Sections 2 and 3.

We have implemented the framework and validated our approach with automated
formal proofs based on previous results in the literature that had been manually
proved. These results are presented in Section 4.6. Moreover, the proofs obtained
are quite readable as no prior rewriting is performed (such as clausal form), for it
may obfuscate human analysis.

Our approach tries to encompasses many concepts found in the ac literature, but
it does not take into account some peculiarities of very dedicated models. For in-
stance, our framework does not encompass authentication (Jim 2001) and delegation
(Li et al. 2003; Wainer et al. 2007). Section 6 evaluates the major design decisions
of the framework. The very last section concludes this paper and gives the main
directions for future work. For sake of clarity and applicability, most of the examples
of in this paper are based upon the Rbac model and further extensions.

2 Access control framework

This section defines an access control framework able to express several classical
models and extensions found in the literature. As we will see in the next section,
this framework is a subset of the general framework proposed for access control
constraints, that relies on database integrity theory.

Without lack of generality, we operate a clear distinction between models and
policies: ac models defines structures and ac policies are instances of these struc-
tures. In such a perspective, ac design is the task of defining ac models, whereas
administration of ac is the task of defining policies, which is up to administrators.

Fol has been advocated a suitable formal framework to formalize ac models and
policies (Li et al. 2003; Jim 2001; DeTreville 2002; Bertino et al. 2003; Li and Mitchell
2003; Barker and Stuckey 2003; Halpern and Weissman 2003; Miège 2005). From the
logical point of view, an ac model both define:

– a vocabulary, i.e., the set of sorts and relations between sorts used to organize ac-
cess privileges (e.g, subjects, roles, permissions, assignments of roles to subjects)

– a set of so-called rules expressed in a first-order language built over the vocabu-
lary, i.e., the policy that states how privileges are derived from base concepts and
relations (e.g., a subject is granted some access only if it endorses some role with
the corresponding access right).

Section 2.1 defines the vocabulary and states of an ac model. Section 2.2 defines
rules and policies. The generic definition of an ac model is summarized in Section 2.3.

2.1 Access control vocabulary and state

An ac model relies on vocabulary: a set of sorts and relations between sorts. Sorts are
the main concepts used to organize rights (e.g., users and roles. . . ). Relations define
how sorts are related in the model (e.g., assignments between users and roles). The
goal of an ac system is to determine whether an access (an action on an object) issued
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Fig. 1 The core vocabulary
edb of Rbac

by a subject that represents a user is granted or not. Thus, the main sorts of subjects,
users, actions and objects have to be defined in any ac model.

Sorts partition the set of constants in a policy. This property is tied to the many-
sorted Fol framework. It is shown that many-sorted Fol can be reduced to one-
sorted Fol (i.e., classical logic) by assigning a specific unary predicate symbol DS

called domain predicate symbols to each sort S (Gallier 1986, Chapter 10, p. 460).
In our framework, we implicitly operate this transformation by assigning a unique
unary predicate symbol to each sort. The vocabulary is represented in the relational
formalism according to the standard terminology used in databases.

Definition 1 Access control vocabulary. The vocabulary Voc of an ac model is the
union of a set Sorts of unary predicate symbols called sorts and a set Rel of n-ary
predicate symbols called relations.

The sorts of users (User), subjects (Subject), actions (Action) and objects (Object)
must be present in any ac vocabulary.

Figure 1 illustrates the core vocabulary of Rbac models. This vocabulary is
composed of five sorts (drawn by rectangles in Fig. 1): User, Subject, Role, Action
and Object. Moreover, four relations are defined (drawn by diamonds in Fig. 1):
URA betwen User and Role, PRA between Role, Action and Object, SU between
Subject and User and SR between Subject and Role.

We define the state of an ac model, which is a set of facts defined over the core
vocabulary edb. The state of an ac model is the extensive part of a policy, which
can practically be stored in a Relational Database Management System (rdbms).
Following traditional axioms of logical interpretation of relational databases, we
assume that constants are distinct and that states are finite.

Definition 2 Access control state. To each sort S ∈ Sorts is associated a set of
constants S called its domain. Domains are pairwise disjoint: S ∩ S′ = ∅ for all S �= S′
in Sorts. To each relation R ∈ Rel of arity n between sorts S1 . . . Sn, is associated the
set R = S1 × . . . × Sn.

An access control state I on an ac vocabulary Voc is a mapping from each sort
S ∈ Sorts to a finite subset of S, called its active domain, and from each relation
R ∈ Rel to a finite subset of R.

In the context of Rbac, the term ac state (a.k.a. Rbac database) has first been
coined by Gavrila and Barkley (1998). A toy sample of an Rbac state I (over
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Table 1 A sample Rbac state

URA SR PRA SU

User Role Subject Role Role Action Object Subject User

Alice r1 S1 r1 r1 r file1 S1 Alice
Alice r2 S1 r2 r1 r file2 S2 Bob
Bob r1 S2 r1 r1 r file3 S3 Bob
Bob r3 S3 r3 r2 w file1 S4 Charly
Charly r1 S4 r4 r3 w file2
Charly r4 r3 r file4

r3 w file4
r3 x file4
r4 w file3
r4 r file4
r4 w file4
r4 x file4

vocabulary shown in Fig. 1) is given in Table 1. In this state, the sort User takes its
values from the set {Alice,Bob,Charly}, Role from {r1,r2,r3,r4}, Action from
{r,w,x} and Object from {file1,file2,file3}.

In this state, Bob is assigned both roles r1 and r3 and Bob endorses these roles in
two different sessions, namely S2 and S3. The rules of Rbac models allow inferring
that Bob can read file1,file2 and file3 as the role r1 is granted r access on
file1,file2 and file3.

2.2 Access control rules and policies

In this section we define the ac rules. Rules express the deductive principles of an ac
model. From a set of rules P and a state I, it is possible to compute derived relations
on which the access decision process is based. The state is the minimal knowledge
from which a complete policy may be derived using the set of rules.

For instance, in order to prevent administrators from inserting redundancies in a
policy, several algebraic properties of relations are commonly assumed: transitivity,
reflexivity or symmetry for instance. These properties are expressed ‘in intenso’ by
means of rules. Thus, administrators only have to insert the minimal knowledge in
the state. The complete policy is obtained by applying the set of rules P as a closure
operator producing new facts.

In the case of complex ac models, defining derived relations within the model is
a mandatory prerequisite in order to obtain a maintainable state. This separation
between extensive relations in the state and intensive relations in the policy is
a design choice made according to the recommendations addressed to the Rbac
standard (Li et al. 2007), in particular the third suggestion:

Suggestion 3 The standard should make a clear distinction between base relations and
derived relations.

Several fragments of Fol have been used as formal languages for modelling ac
rules. Datalog-based models are considered expressive enough to capture complex



www.manaraa.com

J Intell Inf Syst (2012) 38:131–159 137

ac policies (Bertino et al. 2003; Miège 2005; Jim 2001; Barker and Stuckey 2003). We
focused our work on Fol rules of DatalogC, which has been recognized as fruitful
to formalize ac models (Li and Mitchell 2003).

We operate the main following specializations on Fol by selecting DatalogC as
a formal language for rules: functions, negation and disjunction are not allowed.
Formally, DatalogC sentences are formal expressions of the form:

∀X̃ R1(X1) ∧ . . . ∧ Rn(Xn) ∧ ψ(X̃) ⇒ R0(X0)

where ∀i ∈ 0..n, Ri are symbols from Voc and Xi are sequences of logic variables of
length equal to the arity of Ri. The left-hand side of a rule (R1(X1) ∧ . . . ∧ Rn(Xn) ∧
ψ(X̃)) is called the body of the rule its right-hand side (R0(X0)) is called its head.
X̃ is the set of variables that appear in the body. ψ(X̃) is a conjunction of linear
arithmetic constraints (e.g., ≤, ≥, =, �=) over variables and constants of same sorts.

Definition 3 Access control rules. The rules of and ac model is a set P of DatalogC

sentences.
P defines a partition on the vocabulary Voc: idb ∩ edb = ∅ and idb ∪ edb = Voc.

idb, for intensive database, is the set of relations that appear in the heads of the rules
and edb, for extensive database, is the set of relations that appear only in the bodies
of the rules but not in their heads.

The definition of the component P that captures rules is generic. It encompasses
the main notions introduced in the literature to organize ac policies. Next subsec-
tions focus on three main derived relations that are commonly used in ac models:
authorization triple, hierarchies and mutual exclusion. We can now formally define
ac policies.

Definition 4 Access control policy. The semantics of rules is given by the standard
Fol model-theoretic interpretation of DatalogC rules.

Given an ac state I of a model AC = (Voc, P), an access control policy I′ over a
given state I is a logical model of P stated I′ |= P with I ⊆ I′.

The existence of a decidable procedure which computes the interpretation I′
from I ensures that it is always possible to compute the policy and consequently
to answer whether an access request is granted or denied. Datalog’s (and its major
extension such as DatalogC, C-Datalog or Datalog¬) restrictions ensure that there
is a unique minimal model of P and that this model can be computed in a finite
time (Abiteboul et al. 1995, Theorem 12.5.2, p. 301). Uniqueness of the minimal
model ensures that for given state and set of rules there is a unique derived policy.
The finite time property ensures that computation of the policy if decidable and thus,
it ensures that access control requests will be always answered.

2.2.1 Derivation of authorizations

We have defined the structure of an ac model, however deriving authorizations
from state has not been explained yet. As coined by Lampson in his seminal paper
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Table 2 Rules for
fundamental triples in Rbac

SR(S, R) ∧ PRA(R, A, O) ⇒ Access(S, A, O)

URA(U, R) ∧ PRA(R, A, O) ⇒ Static(U, A, O)

SU(S, U) ∧ Access(S, A, O) ⇒ Dynamic(U, A, O)

(Lampson 1974), the aim of access control is to take a boolean ac decision upon
an ac request. An ac request is a triple subject, action, and object. The reference
monitor which enforces ac acts as a Non-bypassable, Evaluatable, Always Invoked
and Tamperproof (neat1) proxy between subjects and objects. It takes authorization
decisions upon the policy.

Definition 5 Fundamental triples. The three following fundamental triples symbols
must appear in the intensive database idb, and the set of rules P must define how
to derive the corresponding relations Access ⊆ Subject × Action × Object, Static ⊆
User × Action × Object and Dynamic ⊆ User × Action × Object.

The relation Access is the set of ac permissions granted to subjects. Static is
the set of permissions granted to users independently of the subjects they use.
Dynamic is the set of permissions granted to users through the subjects. The inclusion
Dynamic ⊆ Static must hold in any model.

Authorizations decisions are based upon triples Access derived from the state.
Thus, the reference monitor can be modelled as a function:

F : Subject × Action × Object → { f alse, true}

F(s, a, o) =
{

true if (s, a, o) ∈ Access

f alse otherwise

The three rules showed in Table 2 define the triples in the Rbac model. According
to the sample toy state of Table 1, user Bob is assigned to two roles r1 and r3.
One may be interested by the authorizations statically granted to Bob which is
{(r,file1), (r,file2), (r,file3), (w,file2), (r,file4), (w,file4), (x,file4)}
by means of the query: {

(a, o) | Static(Bob, a, o)
}

2.2.2 ac models hierarchies

The Rbac standard contains two major features to make ac administration easier:
role hierarchies and constraints. Hierarchies are a way to reduce redundant user
and permission-role assignments. Roles are given a preorder (reflexive, transitive) �
modelling an is a relationship. Relation r1 � r2 means that every permissions granted
to role r1 are granted to r2 and that each user who is a member of role r2 is also a

1http://www.ois.com/Products/MILS-Technical-Primer.html

http://www.ois.com/Products/MILS-Technical-Primer.html
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member of r1. Our framework generalizes this approach and takes recommendations
of Li et al. (2007) into account:

Suggestion 4 The Reference Model should maintain a relation that contains the role
dominance relationships that have been explicitly added, and update this relation when
the role hierarchy changes.

For any sort S ∈ edb of an ac model, we define two relations: a dominance relation
SeniorDS ∈ edb stored in the state, and an inheritance relation SeniorS ∈ idb defined
as the reflexive transitive closure of SeniorDS. Please note that we use suffix D to
distinguish between extensive and intensive predicate.

Definition 6 Inheritance. A sort S ∈ edb of an ac model is given an inheritance
relationship if a dominance relation SeniorDS with SeniorDS ⊆ S × S is defined in
edb and if the following three rules are defined in P:

SeniorDS(S, S′) ⇒ SeniorS(S, S′)
SeniorDS(S, S′) ∧ SeniorS(S′, S′′) ⇒ SeniorS(S, S′′)

S(I D) ⇒ SeniorDS(I D, I D)

If defined, a SeniorS relation should be used in the definition of ac triples. For
instance, in the Rbac models with role hierarchies, the rule deriving the Access
relation is redefined as follows, in order to take the role hierarchy into account:

SR(S, R) ∧ SeniorR(R, R′) ∧ PRA(R′, A, O) ⇒ Access(S, A, O)

State from Table 1 is an instance of the flat Rbac model, without role hierarchy.
Assume that we add r5 into roles and that r5 inherits r4 SeniorRole(r5,r1). With the
extended Access rule, any user who is assigned to r5 has at least r access on file1,
file2 and file3 because these permissions are granted to r1.

2.2.3 Mutual exclusion relation

Another important feature introduced in the ac literature is mutual exclusion, which
is the main constraint defined in the Rbac standard (Ferraiolo et al. 2003). For
instance, one may define that no user can be assigned to both roles r3 and r4, because
they stands for mutually incompatible roles.

As it is the case for hierarchies, mutual exclusion needs two relations: an extensive
one SoDD and an intensive one SoD which is its symmetric closure. Moreover, when
both an exclusion and an inheritance relation have been defined on the same sort,
an additional rule must be defined in P, to ensure that exclusion is propagated via
inheritance (Gavrila and Barkley 1998).

Definition 7 Mutual exclusion. A sort S ∈ edb is given a mutual exclusion relation-
ship if a core separation relation SoDDC ⊆ S × S is defined in edb and if a relation
SoDS ⊆ S × S is defined with the following two principles in the set of rules P:

SoDDS(S, S′) ⇒ SoDS(S, S′)
SoDS(S, S′) ⇒ SoDS(S′, S)
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If an inheritance relation SeniorS is also set on a sort S, then the following rule must
be defined:

SoDS(S, S′) ∧ SeniorS(S′′, S) ⇒ SoDS(S, S′′)

Last definition is still incomplete: we have not defined which constraint the mutual
exclusion relation really enforces. We have neither expressed that an inheritance
relation should be antisymmetric nor that a subject should be assigned to a unique
user. As a matter of fact, we have only expressed how to define the policy I′. We will
show in the next section how to define the conditions upon which the policies are
consistent according to a set of constraints.

For instance, in the toy Rbac state of Table 1, one states that r3 and r4 are
mutually exclusive by adding SoDRole(r3,r4) into the state. It may be a way to ensure
that request (allowed to r3) and approval (allowed to r4) of major expenditure are
done by two separate people. In the toy Rbac state, it should be inconsitent to state
SoDRole(r1,r3) because user Bob is assigned to both.

2.3 Framework summary

Policies are logical models (in the model-theoretic sense) of a theory defined by an
ac model. The word model is indeed prone to confusion. We use the term (ac) model
to refer to the structure that describes how rights are organized and granted (i.e., the
meaning of model in the ac literature). We explicitly use the term logical model to
refer to a model-theoretic interpretation which satisfies a set of closed Fol formulae.

This preliminary modelling step is paramount for addressing further issues. The
proposed framework is closely related to the deductive database paradigm. In this
paradigm, a database is defined with a schema (i.e., the ac vocabulary Voc) and a set
of deduction rules (i.e., expressed in Datalog).

An ac state is considered as a set of relational data structured accordingly to
a given vocabulary. A policy is a set of facts derived from a state and a set of
rules. Formally, we have defined an ac model as a pair AC = (Voc, P) composed
as follows:

– Voc, the access control vocabulary: a set of unary relations called sorts and n-ary
relations between these sorts. This vocabulary sets the core of the ac model used
to organize the policies. An interpretation I of edb is a state.

– P: a set of DatalogC rules defining the ac model rules. These rules allow
deducing consequent facts from I, thus defining an intensive vocabulary idb and
a policy I′ over idb.

One of our main objectives is to treat constraints as first class citizens. In the
next section, we will extend the definition of (simple) ac model to be a triple
AC = (Voc, P, �). This refinement includes a set � of Fol formulae modelling the
ac model constraints. They are expressed by data dependencies, which subsume the
expressive power of traditional deductive database such as DatalogC. As shown
in this paper, this enhanced expressivity is needed to model complex integrity
constraints found in ac models. Whereas formulae of P allow deducing the policy
from a given state, those from � restrict I and I′. The definition and usage of � are
defined in the next section.
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3 Access control constraints

Among the formal tools available in the database area, data dependencies (a.k.a
integrity constraints) have been defined to capture integrity requirements on re-
lational data. In a unification attempt, they have been defined as Fol sentences
(Abiteboul et al. 1995, Chapter 10). In the proposed framework, dependencies are
used to capture ac constraints: they capture formal integrity requirements of policies.

3.1 Data dependencies

Dependencies share common characteristics with Datalog deduction rules, but they
form a larger subclass of Fol sentences. Data dependencies are categorized into
classes of increasing expressivity. The best known classes are functional (fd), inclu-
sion (ind) and multivalued (mvd) dependencies (Abiteboul et al. 1995). Expressive
classes have been developed to express complex statements on relational data. They
can model semantic relationships in spatial, temporal or multimedia databases.

One of the most general form of dependencies is constrained tuple-generating
dependencies (ctgd) (Maher and Srivastava 1996) which are Fol sentences having
the following syntax (we reuse convention from Section 2.2):

∀X̃ R1(X1) ∧ . . . ∧ Rn(Xn) ∧ ψ(X̃)

⇒ ∃Z̃ Q1(Y1) ∧ . . . ∧ Qm(Ym) ∧ φ(Ỹ)

where Z̃ does not designate the whole set of variables in the head but only those
which are not already bound by a universal quantifier (Z̃ = Ỹ − X̃).

Special forms of dependencies considered in this paper are restriction of ctgd:

1. Constraint-Generating Dependencies (cgd), head is restricted to constraints:

∀X̃ R1(X1) ∧ . . . ∧ Rn(Xn) ∧ ψ(X̃) ⇒ φ(X̃)

2. Nullity-Generating Dependencies (ngd), head is empty:2

∀X̃ R1(X1) ∧ . . . ∧ Rn(Xn) ∧ φ(X̃) ⇒⊥
3. Full Tuple-Generating Dependencies or Total Tuple-Generating Dependencies

(Full-tgd) do not include existentially quantified variables:

∀X̃ R1(X1) ∧ . . . ∧ Rn(Xn) ⇒ Q1
(
X ′

1

) ∧ . . . ∧ Qm
(
X ′

m

)
4. Tuple-Generating Dependencies (tgd) or Generalized Dependencies, general-

ize both ftgd and ind but do not allow constraints:

∀X̃ R1(X1) ∧ . . . ∧ Rn(Xn) ⇒ ∃Z̃ Q1(Y1) ∧ . . . ∧ Qm(Ym)

2⊥ stands for a logical antilogy (e.g., 0 = 1).
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Dependencies are used either to restrict authorized values in a policy when
their heads do not include atoms (e.g., cgd, ngd), or to impose presence of tuples
if some other ones are already present in the policy (e.g., ind, mvd, tgd). Note
that ngd allow the expression of negative requirements as φ ⇒⊥ is logically equiva-
lent to ¬φ.

In our framework, the set of constraints over an ac model is denoted as �. It
captures conditions that must hold in the policy. The expressivity of dependencies is
needed to capture desirable properties which cannot be expressed in P, which relies
on the DatalogC fragment, mainly due to the absence of existential quantifier. From
the logical perspective the P ∪ � of rules and constraints is a logical theory, i.e., a set
of closed Fol formulae.

Definition 8 Access control model. An access control model is a triple AC =
(Voc, P, �), where � is a set of constraints expressed as data dependencies.

The semantics of constraints is given by the standard Fol model-theoretic inter-
pretation of dependencies. An access control policy I′ built from a state I is consistent
iff I′ |= �.

The next subsections describe how dependencies are used to express various
security requirements of models in an homogeneous way: integrity of states, alge-
braic properties, semantics of mutual exclusion, constraints on authorizations and
administrative prerequisites.

3.2 Integrity constraints on ac states

We define a category of constraints ensuring that relations are well-founded. For
example, whenever a relation over sorts exists, the sorts must exist too. Thus, the
sentence URA(U, R) ⇒ User(U) ∧ Role(R) should be enforced in any Rbac policies:
a role can be assigned to a user only if both the user and the role exist. This can
be considered as an equivalent to foreign key constraints in rdbms. These kinds
of constraints ensure that what is actually stored is consistent. This leads to the
definition of well-founded state.

Definition 9 Well-founded state. Let � be a set of constraints � ⊆ � involving only
symbols of the extensive database edb, such that for each n-ary relation R ∈ edb over
sorts S1 . . . Sn ∈ edb, � contains an inclusion dependency of the form:

R(I D1, . . . , I Dn) ⇒ S1(I D1) ∧ . . . ∧ Sn(I Dn)

Let I be a state. Then I is well-founded if I |= �.

For instance, in the Rbac standard it is defined that each subject has to be assigned
to a unique user and that a role can be used by a subject only if the role is assigned
to the user who owns the subject. These constraints can be defined by dependencies
as shown in Table 3. These requirements are satisfied by the Rbac state given in
Table 1, thus this state is a well-founded one.
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Table 3 Integrity
requirements for SU relation
in Rbac

SR(S, R) ⇒ ∃U SU(S, U)

SU(S, U) ∧ SU(S, U ′) ⇒ U = U ′
SU(S, U) ∧ SR(S, R) ⇒ URA(U, R)

The dependencies paradigm allows the formalization of the next suggestion found
in the critique of the Rbac standard (Li et al. 2007):

Suggestion 2 The standard should accommodate Rbac systems that allow only one
role to be activated in a session.

This constraints can be captured in a straightforward way by means of a func-
tional dependency that enforces a key constraint SR(U, R) ∧ SR(U, R′) ⇒ R = R′.
Actually, this requirement is not satisfied by Table 1, because Alice endorses two
different roles in session S1.

3.3 Algebraic constraints of relations

ac models hierarchies are commonly defined as partial orders for avoiding cycles
(e.g., Kuhn (1997) for Rbac or Miège (2005) for Orbac). Moreover, a mutual
exclusion is defined as irreflexive to prevent a sort from being mutually exclusive
with itself (e.g., Li et al. 2004). As example, antisymmetry of inheritance relation and
irreflexivity of mutual exclusion in Rbac can be expressed by dependencies, as given
in Table 4.

Moreover, some additional properties may be desirable. For example some mod-
els (e.g., Lattice-Bac (Sandhu 1993)) organize sorts using forests of trees, forests of
inverted trees or lattices (posets in which any two elements have a join and a meet).
These additional requirements over SeniorS and SeniorDS relations can be expressed
by cgd. Note that the restriction of a hierarchy to a lattice could not be expressed in
Datalog-based framework, because these frameworks lacks existentially quantified
variables, and the property states that there exists some meet and join for any given
pair of elements.

Definition 10 Restricted hierarchies. Let SeniorS ∈ idb be an intensive inheritance
relation computed from an extensive one SeniorDS ∈ edb. SeniorS is called a limited
hierarchy of type:

– forest of trees, if � contains the following fd:

SeniorDS(S, S′), SeniorDS(S, S′′) ⇒ S′ = S′′

Table 4 Antisymmetry of role
hierarchy, and irreflexivity of
mutual exclusion

SeniorRole(R, R′) ∧ SeniorRole(R′, R) ⇒ R = R′

SoDRole(R, R) ⇒ ⊥
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– forest of inverted trees, if � contains the following fd:

SeniorDS(S′, S), SeniorDS(S′′, S) ⇒ S′ = S′′

– lattice, if � contains the following ftgd:

S(S′), S(S′′) ⇒ ∃S⊥ SeniorS
(
S′, S⊥

)
, SeniorS

(
S′′, S⊥

)
S(S′), S(S′′) ⇒ ∃S� SeniorS

(
S�, S′) , SeniorS

(
S�, S′′)

3.4 Semantics of mutual exclusion

Although the intensive SoDS ∈ idb relation ensures that there is a mutual exclusion
on sort S, the principles of mutual exclusion can be applied from different perspec-
tives. In the Rbac model, if two roles r and r′ are stated as mutually exclusive, several
interpretations can exist (Crampton 2003). All these different semantics can be stated
respectively by means of cgd:

– no user could be assigned to both roles r and r′:

SoDRole(R, R′) ∧ URA(U, R) ∧ URA(U, R′) ⇒ ⊥

– no subject could be assigned to both r and r′:

SoDRole(R, R′) ∧ SR(S, R) ∧ SR(S, R′) ⇒ ⊥

– no common permission could be granted to both r and r′:

SoDRole(R, R) ∧ PRA(R, A, O) ∧ PRA(R′, A, O) ⇒ ⊥

– no action over a common object could be granted to both r and r′:

SoDRole(R, R′) ∧ PRA(R, A, O) ∧ PRA(R′, A′, O) ⇒ ⊥

For instance, according to the first semantics, it is inconsistent to add
SoDRole(r1,r2) in the state given in Table 4, because Alice is granted both roles
r1 and r2. According to the second semantics, there is an inconsistency because
of session S1. However, according to the third semantics, there is no inconsistency
because no permission is granted to two different roles.

3.5 Constraints on authorization relations

The Rbac model imposes that any authorization must be granted via a role (Ferraiolo
et al. 2003):

Property 3.2 A subject s can perform an operation op on object o only if there exists a
role r that is included in the subject’s active role set and there exists an permission that
is assigned to r such that the permission authorizes the performance of op on o.
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Table 5 Constraints on
authorizations in Rbac

Access(S, A, O) ⇒ ∃R SR(S, R) ∧ PRA(R, A, O)

Static(U, A, O) ⇒ ∃R URA(U, R) ∧ PRA(R, A, O)

Dynamic(U, A, O) ⇒ ∃S SU(S, U) ∧ Access(S, A, O)

This property can be considered as fundamental in structured ac models. Defining
intermediate sorts between users and permissions is a way to simplify administration
tasks. Bypassing these sorts is error-prone and may lead to ambiguities within
policies. Thus, we argue that such a property defined for Rbac should be generalized.
To the best of our knowledge, this property is neither captured in logic-based
modelling attempts of Rbac, nor in extended models.

Definition 11 Property of authorizations. If there is a rule in P with head Access
(resp. Static, Dynamic) and hypothesis ψ , then there is a corresponding constraint in
� of the form Access ⇒ ψ (resp. Static, Dynamic) that makes the rule an if and only
if condition.

According to the rules for triples given in Table 2, the constraints of Table 5 can
be derived. These tgd use existentially quantified variables shared among multiple
predicates. Such sentences can not be expressed in Datalog-based frameworks
because they lack the existential quantifier. This quantifier is needed to capture so
called invented values in the database terminology, i.e., unknown values that have to
be present in a policy to ensure its consistency.

3.6 Administrative prerequisite

An administrative prerequisite enforces the presence of tuples before allowing
administrative operations (Ferraiolo et al. 2003). Administrative operations consist
in updates, insertions and deletions of tuples within the state I. If any administrative
prerequisite, expressed by some dependencies, is violated, the transaction initiated
by the administrator will not be committed.

Definition 12 Administrative prerequisite. An administrative prerequisite con-
straint imposes the presence of tuples in I′. A transitive prerequisite relation
RequiredR ∈ idb over a relation R is defined as the transitive closure of a relation
RequiredDR ∈ edb.

Prerequisite constraints can be modelled as (constrained) tgd in � by an auxiliary
relation RequiredDR of the following form, where the predicate R is present in both
the sentence body and head:

∀X̃ R(XR) ∧ . . . ∧ RequiredR(X) ∧ φ(X̃) ⇒ ∃Z̃ R
(
X ′

R

) ∧ . . . ∧ ψ(Ỹ)

For instance, in the Rbac models, administrative prerequisites are used for
preventing administrators from assigning roles to users if some other role has not
already been defined. This is an example of a prerequisite over the relation URA.
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The following sentences express these statements. Defining RequiredD(r1, r2) in I
imposes that whenever a user is assigned to r2, then there must be at least one user
assigned to r2.

RequiredD(R, R′), Required(R′, R′′) ⇒ Required(R, R′′)

URA(U, R), Required(R, R′) ⇒ ∃U ′ URA(U ′, R′)

4 Constraint verification

From now on, we have defined the three basic components of an ac model. The task
of defining the vocabulary Voc (the names of subjects, roles, assignments, etc.), the
set of administrative rules P and the set of integrity constraints � is dedicated to the
ac model designer. Administrators define only the state I, as I′ = P(I) is computed
from I and P. The policy is consistent if I′ |= �. Thus, from a logical perspective, there
are only a few differences between P and � which can be considered as a whole as a
logical theory T = P ∪ �.

4.1 Formal characterization

The main difference between P and � lays in their usage: rules are used for com-
puting the policy from the state, whereas constraints are used to impose restrictions
on authorized instances of I′. Notice that the uniqueness and computability of I′ is
ensured by the properties of the fragment of Fol used for P.

In this section we rely on two theoretical problems over logical theories:

– the satisfaction problem. Answering whether a policy I′ satisfies a given Fol
sentence σ : I′ |= σ . This problem is central for computing I′ from I, for answering
queries and for checking whether a policy satisfies the set of constraints for a
given model. The satisfaction problem is decidable for the class of formulae used
for AC = (Voc, P, �).

– the logical implication problem. Answering whether a set of closed formulae T
logically implies a closed formula σ : T |= σ or, in other words, deciding if any
policy model of a theory T is also a model of the single sentence σ . This problem
is central for simplifying logical theory or for checking model consistency from
an abstract perspective, without considering any state. This problem is decidable
in the class of ftgd extended with constraints. However, it is semi-decidable
(it may not halt for negative answers but will always halt for positive ones) for
larger classes of dependencies such as ctgd.

As dependencies such as ctgd are strictly more expressive than DatalogC, and
as they share the same Fol semantics, we will actually treat the sentences of P
as dependencies to build and homogeneous logical theory T made of rules and
constraints. Thus, it is possible to use the same proof procedures for both rules and
constraints without distinction.

We have implemented the proof procedures for dependencies presented in Beeri
and Vardi (1984), Maher and Srivastava (1996) and Coulondre (2003) to validate
our approach. As shown in Section 4.6, our prototype allows automatizing the
consistency checking of Rbac policies and furnishing proof of previous results
independently proposed (Gavrila and Barkley 1998).
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4.2 Administrative review

One of the features expected from an access control model implementation is the
administrative review. This set of operations has been defined in the Rbac standard:
“When URA and PRA relation have been created, it should be possible to view
the contents of those relations from both the user and role perspectives[. . . ]”. In the
present framework, administrative reviews are simple conjunctive queries over I′.
Therefore, the requirements of the standard definition are met.

Definition 13 Administrative reviews. Any conjunctive query (from the standard
database sense) built upon the vocabulary Voc is an administrative review.

Examples of queries built upon the Rbac model vocabulary Voc are respectively:
(1) the set of permissions granted directly (without hierarchy) to users through their
roles, (2) the set of users who can execute an object, whatever it is, and (3) the set of
users who are assigned the role r1:

1. {(u, a, o) | ∃r URA(u, r) ∧ PRA(r, a, o)},
2. {u | ∃s, o, r SU(s, r) ∧ SR(s, r) ∧ SeniorD(r, r′) ∧ PRA(r′,x, o)}
3. {u | URA(u,r1)}

The answer to the last query, on the state given in Table 1, is {Alice,Bob,

Charly}. When I only is queried, we can rely upon any rdbms to provide the
querying mechanism, as the state is stored in extension in relational tables. The
technical difficulty is to compute and to query the policy I′. As far as Datalog
or DatalogC is chosen, I′ can be computed quite efficiently. This computation is
still valid as long as I is not modified, thus allowing some caching optimizations
techniques. We suggest four approaches to compute the policy I′ from a state I and
rules P:

– use recursive queries and advanced features provided by common rdbms. For
instance, Microsoft sql-Server offers the Common Table Expression system
which allows (restricted) recursive queries. From the logical point of view, this
kind of feature can be seen as restrictions of Datalog (e.g., set-based operations
are not provided),

– use triggers and stored procedures to compute I′ on the fly on each modification
of I. This approach can be implemented for simple access control models (when
cardinality of T is small enough), but will become hard to maintain if many
roles are defined. Indeed it is needed to code specific procedures for each Fol
sentence in P.

– use a deductive database engine. Several efficient engines have been developed,
for instance dlv3 or xsb.4 They can compute I′ and include recursive queries and
simple forms of dependencies. However, expressive dependencies such as tgd
are not handled.

3http://www.dbai.tuwien.ac.at/proj/dlv/
4http://xsb.sourceforge.net/

http://www.dbai.tuwien.ac.at/proj/dlv/
http://xsb.sourceforge.net/
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– develop an external inference engine out of an existing rdbms while relying on
the mechanisms from the rdbms for access and modification of state. As basic
operations are common to both computation of I′ and logical inference over T
(see next section), we have implemented this approach in a library dedicated to
expression and inference of general classes of dependencies.

4.3 Policy completeness and consistency

The validity of an ac policy is checked by verifying, given a model AC = (Voc, P, �),
whether I′ |= �. Unsatisfaction of a set of constraints by a policy can fall into two
categories:

– the policy is inconsistent: some cgd or ngd are not satisfied. For instance, a policy
is said to be inconsistent if antisymmetry, irreflexivity or exclusion relations are
not satisfied,

– the instance is incomplete: some tgd are not satisfied. For instance, a policy is said
to be incomplete if some properties of authorization relations or administrative
prerequisites are not satisfied.

If a policy is inconsistent or incomplete, administrators have to correct the state.
Whenever a policy is inconsistent, deletion of existing facts or value updates should
be favored. Whenever a policy is incomplete, addition of facts should be privileged.
Examples of possible corrections of inconsistent or incomplete policies are given in
Table 6.

4.4 Static policy comparison

Several ac models have introduced dynamic sorts. For instance, in the Rbac family,
the unique dynamic sort is subject, the other ones (role, user, action, object, permis-
sion) are static, as well as relations between them (e.g., user-role assignment URA,
permission-role assignment PRA). This specialization can be expressed according to
the rights granted to administrators over the state. Sorts and relations in edb can be
categorized as follows:

– static: only administrators can modify this part of the state. Static aspects are
stable according to the execution of the system and do not depend on the end-user
activity.

Table 6 Examples of inconsistent or incomplete policies corrections

Dependency Type Correction in the state

Property Antisymmetry egd Deletion of cycles
Irreflexivity ngd Deletion of edges

Restrictions Tree hierarchy egd Deletion of ancestors
Inverted-tree hierarchy egd Deletion of descendant
Lattice hierarchy ttgd Addition of edges

Constraints Prerequisite ctgd Addition of requirement
Exclusion ngd Deletion of assignments
Hierarchy/exclusion ngd Deletion of assignments



www.manaraa.com

J Intell Inf Syst (2012) 38:131–159 149

– dynamic: administrators are not the only ones having the right to modify this
part of the state. For instance, the sort of Subject in Rbac acts on behalf of an
user. A SU is created each time a user logged into the system. In ac models
involving time or space, these sorts and relations are out of the sovereignty of
the administrators.

It is straightforward to define static comparison of policies from the relational
paradigm. In Section 2.2.1, we have defined three fundamental authorization triples,
i.e., Access, Dynamic and Static. Considering the last one, we can compare static
restriction of policies by comparing the sets of tuples in Static.

Definition 14 Static comparison of policies. Let be I1 and I2 two consistent and
complete policies, expressed on two different ac models AC1 et AC2.

Let Static1 be the set of static authorization triples of I1, and Static2 be the set of
static authorization triples of I2. Static1 ∈ I′

1 ⊇ I1 et Static2 ∈ I′
2 ⊇ I2.

The policy I1 is as or more more restrictive than I2 if f :

Static1 ⊆ Static2

The policy I1 is as or more more permissive than I2 if f :

Static1 ⊇ Static2

The policies I1 and I2 are equivalent if f :

Static1 ⊆ Static2 and Static1 ⊇ Static2

Actually, static sorts constitute the backbone of ac models. For instance, roles in
Rbac, labels in Mac, organizations in Orbac or tasks in Trbac are static sorts. Thus,
it is worth verifying static enforcement of ac policies, as this can ensure that most
robust properties are valid in any state of the policies (Li et al. 2004).

4.5 Model properties

Whereas previous subsections have been devoted to policy checking, this section
considers ac models from an abstract perspective, without reference to any particular
policy or state. The main problem we address is logical implication, in particular
for model simplification purposes. For example, in the case of a new tailored ac
model, where many collaborative designers from different sites might be involved,
the associated logical theory may become quite large (e.g., hundreds of rules and
statements). Thus, for practical purposes, it is necessary to reduce the size of the
theory.

Definition 15 Redundancy in an ac model. Let be T = P ∪ � the logical theory of
an ac model made of rules and constraints. Let be σ ∈ T, if T\{σ } |= σ then the
dependency σ is said redundant, moreover T\{σ } and T have the same models.
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Maher and Srivastava (1996) give two bottom-up (also known as forward) chase
procedures for solving the implication problem of ctgd: given a set of ctgd �, and
a single ctgd σ (of the form φ ⇒ ψ), determine whether in every policy where � is
satisfied, σ is also satisfied. If the chase procedures successfully stop, then � logically
implies σ , stated briefly as � |= σ .

The operational nature of proof procedures for ctgd is based on the concept of
tuple (a grounded atom, with no variables). The procedures saturates a symbolic
database made of tuples by repeated applications of dependencies, to produce a
model of the set of dependencies. In a precise sense, this model is the most general
possible one, it is a canonical universal one (Calì et al. 2008).

Maher and Srivastava’s procedures keep the same strategy as the original chase
of Beeri and Vardi (1984) extended to deal with constraints. For sake of clarity, orig-
inal algorithm is given in the Appendix. Its design is the core of other procedures for
dependencies and it is conceptually simpler to understand. It’s theoretical complexity
has been shown to be exponential (Beeri and Vardi 1984). The very basic outline of
the chase is as follows, input is a set of dependencies � and a single dependency σ :

1. initialization: the chase picks a valuation μ to hypothesize the existence of some
tuples so that the body φ of σ is satisfied,

2. main loop: treats � as a closure operator generating tuples �(φ), that is repeat-
edly applies dependencies from � to produce new facts,

3. exit condition: at the end of each loop, the following conditions are checked and
three termination cases are possible:

(a) if �(φ) contains an inconsistency, return � |= σ vacuously,
(b) if �(φ) contains an instance of ψ , that is there is a valuation ν that extends

μ such that ν(ψ) ∈ �(φ), return � |= σ ,
(c) if �(φ) neither produces new facts nor contains a instance of ψ , return

� �|= σ .

The ctgd implication problem is semi-decidable: the procedure always halt when
the answer is positive, but may run forever if the answer is negative. However, there
are some interesting decidability results holding in various subclasses of ctgd such
as (Weakly) Guarded-tgd that include existentially quantified variables (Calì et al.
2008). For example, the chase is decidable for tgd having no existentially quantified
variable (Beeri and Vardi 1984).

4.6 Sample result

This section illustrates the proposed approach by simplifying integrity properties of
mutual exclusion and inheritance defined over a common sort. For this illustration,
we use the set of integrity properties for Rbac models defined by Gavrila and Barkley
(1998). In the present approach, these properties are modelled by constraints in
�. The authors have manually proved that the set of properties in Table 7 can be
reduced to a smaller set. Using some proof procedures for dependencies, we can
simplify their logical theory by eliminating redundancies.

We provide a sample execution trace obtained using a prototype. This prototype,
written in C++, can handle the ctgd as well as its subclasses. It relies on an external
constraint solver over reals to handle constraints. Three different chases have been
implemented: Beeri and Vardi (1984), Maher and Srivastava (1996) and Coulondre
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Table 7 Logical characterization of Rbac constraints (Gavrila and Barkley 1998)

Description

σ1 Any two roles assigned for a same user are not in separation of duties
URA(User, Role1), URA(User, Role2), SoD(Role1, Role2) ⇒ ⊥

σ2 No role is mutually exclusive with itself
SoD(Role, Role) ⇒ ⊥

σ3 Mutual exclusion is symmetric
SoD(Role1, Role2) ⇒ SoD(Role2, Role1)

σ4 Any two roles in ssd do not inherit one another
Senior(Role1, Role2), SoD(Role1, Role2) ⇒ ⊥

σ5 There is no role inheriting two roles in ssd
SoD(Role1, Role2), Senior(Senior, Role1), Senior(Senior, Role2) ⇒ ⊥

σ6 If a role inherits another role and that role is in SSD with a third one,
then the inheriting role is in SSD with the third one.
Senior(Senior, Role1), SoD(Role1, Role2) ⇒ SoD(Senior, Role2).

(2003). Given a logical formalization of an ac written using dependencies, the
prototype is used to simplify the model, to compute the policy for a given state,
to check the consistency of the policy and to answer administrative queries. Static
comparison of policies have not been implemented yet.

The following trace is the result of the execution of the ctgd chase of Maher and
Srivastava (1996) implemented in the prototype. Initially, the dependency base is
loaded with σ2, σ3 and σ6 of Table 7. The goal is to prove that {σ2, σ3, σ6} |= σ5. The
following trace is a formal proof of this entailment.

---------------------------Dependencies in base : 4-----------------------------
[0] (for all)[R1,R2] SoDD(R1,R2)->SoD(R1,R2).
[1] (for all)[R1,R2] SoD(R1,R2)->SoD(R2,R1).
[2] (for all)[R] SoD(R,R)->error(ref\/lex) {(1=\=1)}.
[3] (for all)[R,R1,R2] SoD(R1,R2),senior(R,R1)->SoD(R,R2).
--------------------------------------------------------------------------------
Tuples :
[0] SoD(_r1_0,_r2_0); -1;
[1] Senior(_r_0,_r1_0); -1;
[2] Senior(_r_0,_r2_0); -1;

seed : SoD(_r1_0,_r2_0),Senior(_r_0,_r1_0),Senior(_r_0,_r2_0)
goal : {(1=\=1) }
tgdGoal : (for all)[R,R1,R2] SoD(R1,R2),Senior(R,R1),Senior(R,R2)-> {(1=\=1)}.

Hypothesize three tuples SoD(r1,r2), Senior(r0,r1) and Senior(r0,r2) from the
body of σ5.

stepNumber : 1
++++++++++++++++++++++++++++++++++++++++
Treating [1]... ’(for all)[R1,R2] SoD(R1,R2)->SoD(R2,R1).’

Added to tuples: SoD(_r2_0,_r1_0); 1;
Added to activations: {R1:_r1_0,R2:_r2_0}; 0;

...[1] treated

Treating [3]... ’(for all)[R,R1,R2] SoD(R1,R2),Senior(R,R1)->SoD(R,R2).’
Added to tuples: SoD(_r_0,_r2_0); 3;
Added to activations: {R:_r_0,R1:_r1_0,R2:_r2_0}; 0,1;

Added to tuples: SoD(_r_0,_r1_0); 3;
Added to activations: {R:_r_0,R1:_r2_0,R2:_r1_0}; 3,2;

...[3] treated
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With σ3 (sentence [1], mutual exclusion is symetric), SoD(r2,r1) is derived. Next,
applying σ6 (sentence [3], exclusion is propagated through inheritance) twice,
SoD(r0,r2) et SoD(r0,r1) is derived.

stepNumber : 2
++++++++++++++++++++++++++++++++++++++++
Treating [1]... ’(for all)[R1,R2] SoD(R1,R2)->SoD(R2,R1).’

Added to tuples: SoD(_r2_0,_r_0); 1;
Added to activations: {R1:_r_0,R2:_r2_0}; 4;

Added to tuples: SoD(_r1_0,_r_0); 1;
Added to activations: {R1:_r_0,R2:_r1_0}; 5;

...[1] treated

Treating [3]... ’(for all)[R,R1,R2] SoD(R1,R2),Senior(R,R1)->SoD(R,R2).’
Added to tuples: exclusion(_r_0,_r_0); 3;
Added to activations: {R:_r_0,R1:_r2_0,R2:_r_0}; 6,2;

...[3] treated

Next, using σ3 (sentence [1]), SoD(r2,r0) and SoD(r1,r0) are deduced. Thus, by
σ6 (sentence [3]), SoD(r0,r0) is derived.

stepNumber : 3
++++++++++++++++++++++++++++++++++++++++
Treating [2]... ’(for all)[R] SoD(R,R)->Error(ref\/lex) {(1=\=1)}.’

Added to tuples: Error(ref\/lex); 2;
Added to store: (1=\=1)
Added to activations: {R:_r_0}; 8;

...[2] treated

----------------------------------------------------------------------------------
there is an inconsistency in the constraint store F|=g vacuously (VACUOUSLY)
number of rules applied for closure F(l):7
this chase was :0.088197 seconds long
number of tuples generated:10

Finally, applying σ2 (sentence [2], exclusion is irref lexive), an antilogy is derived.
Thus, the chase procedure proved that {σ2, σ3, σ6} |= σ5. The prototype can be used
to derive other sample theorem from the dependencies of Table 7. Let be � the six
dependencies shown in the table. The chase procedures can prove that �\{σ4} |= σ4,
�\{σ5} |= σ5 and that �\{σ4, σ5} |= σ4, σ5.

This example illustrates the utility of the proposed framework. Given an ac model
AC = (Voc, P, �), an automated proof of non-trivial properties can be provided.
For instance, besides the above obtained theorems, we have been able to derive the
following results:

– read and write access over an objet in Mandatory Access Control (Mac) are
granted to a subject iff the subject’s clearance level is equal to the object’s
confidentiality level (Sandhu 1993),

– a root role which inherits all other ones cannot exist in an Rbac policy where two
roles are mutually exclusive (Benantar 2006),

– dynamic authorizations are a subset of static authorizations in Rbac policies
(Ferraiolo et al. 2003).
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5 Related work

5.1 General comparison

Our work is closely related to Barker and Stuckey (2003) which expresses Rbac
models in constraint logic programming, to Halpern and Weissman (2003) which
identifies a subset of Fol for ac models, to Bertino et al. (2003) which describes a
C-Datalog framework for representing ac models, to Jajodia et al. (2001) which
defines a flexible access control framework, to Li and Mitchell (2003) which uses
DatalogC and Miège (2005) which uses the Datalog¬ for defining the Orbac model.
Our main goals were to provide a framework for ac which:

– makes a clear separation between policies and models and has a clear semantics,
– is expressive enough to capture and generalize properties of ac models,
– treats policy constraints as first-class citizens,
– provides readable algorithm execution traces for designers and administrators.

The background we have settled in Section 2 is based on DatalogC. This logical
framework has been often treated as a middle-ground formalism to which many other
logical based frameworks can be reduced, for instance in the work of DeTreville
(2002), Jim (2001), Bertino et al. (2003) and Li and Mitchell (2003). Moreover,
DatalogC has shown to be able to capture several ac models, and various extensions
of Rbac model (Joshi et al. 2005; Damiani et al. 2007). As the present framework
subsumes DatalogC, it can basically capture these models.

The main difference with the above previous work is the fruitful use of data
dependencies as a unifying logical framework which encompasses both traditional
ac rules and integrity constraints. Thus, constraints are expressed in the very same
model, and not expressed in an independent and different framework. As constraints
are integrity requirements of policies, we argue that integrating them in the model as
soon and as tightly as possible is a step towards ensuring ac robustness.

We rely on some known results for data dependencies, in order to provide
well-founded tools for reasoning on policies. An interesting feature of these proof
procedures is that they do not require any prior translation of Fol formulae of rules
P and integrity constraints � (e.g., by means of Skolemization or rewriting rules).
This property leads to native clear traces of automated proofs, as given in Section 4.6.
This greatly enhances the readability of inference results for design and maintenance
purposes. Finally, by means of the prototype, we have been able to re-prove in an
automated way some interesting results found in the literature.

5.2 Frameworks built upon Datalog

Bertino et al. (2003) and Li and Mitchell (2003) have used the Datalog framework,
respectively C-Datalog which allows object-oriented definitions, and DatalogC

which includes constraints. These frameworks are able to capture extended Rbac
models such as Temporal-Rbac (Bertino et al. 2001). The basic components of the
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present proposition (Sections 2 and 2.2) reuse and extend some of their formal
models. Li et al. (2003), Jim (2001), and DeTreville (2002) have extended Datalog
with specific constructions which are reduced into standard Datalog formulae.
However, we have not used rewriting procedures which may cloud the debugging
steps and puzzle administrators.

5.3 Other frameworks built upon logic

Jajodia et al. (2001), Barker and Stuckey (2003) and Halpern and Weissman (2003)
describe logical programs able to express general ac models. These propositions
address the problems arising with the use of closed policies (in which access is by de-
fault denied and authorizations are only positive), open policies (access is granted by
default) or hybrid policies (authorizations and denial can be both explicitly defined).
Miège (2005) use Datalog¬ to deal with negative authorization (prohibition).
These logical frameworks allow a permissive use of negation in formal sentences,
whereas we chose to favor existential quantifiers. However, our framework is able to
support a restrictive use of negation by means of ngd for instance. Our framework
captures complex integrity requirements considered as fundamental in Rbac, which
are not expressible in other ones. Moreover, we provide an effective procedure to
automatize administrative operations.

Our framework is tightly linked to the database area and makes a clear distinction
between policies and models. This separation, advocated by Li et al. (2007), is not
explicit in the work of Barker and Stuckey (2003) and Halpern and Weissman (2003),
as well as in the logic programming paradigm on a more general point of view.
Finally, we have reused and extended some definitions of Ferraiolo et al. (2003)
(properties of Rbac) and results of Gavrila and Barkley (1998) (consistency of Rbac
databases) which were not integrated into other frameworks.

5.4 Access control constraints

Constraints have received much attention in ac models. Rbac is argueably one
of their most prominent representatives for which many kinds of constraints have
been proposed (Gligor et al. 1998; Ahn and Sandhu 1999; Crampton 2003). These
suggestions either define and categorize new kinds of constraints (e.g., the variations
on mutual exclusion outlined in Section 3.4) or proposed specification languages for
constraints. Most of these constraints are defined as a way to enforce separation of
duties, and are variants of mutual exclusion.

The algebra of Li and Wang (2008) for specifying constraints encompasses these
approaches but consider constraints as high-level organization requirements. Our
approach is quite different, in the sense that constraints are defined closer to the
model at a lower level. Thus, we can capture intrinsic properties (e.g., constraints on
authorization triples, prerequisites) as well as general integrity requirements (e.g.,
states well-foundedness, algebraic properties of relations) which are usually taken
into account separately.
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6 Discussion

This section discusses the main choices we made. We divide this section into the ac
structure design choices and the Fol fragment choice.

6.1 Design and administration

By drawing a distinction between an ac model and an ac policy instantiated from a
model, we can define two ac-related activities:

– model design is the task of defining the ac model. The model designer sets up the
sorts and relations of the model (Voc), its rules (P) and the properties that must
be enforced (�). For instance, a model designer may define that tasks and roles
are used to structure policies. As an analogy in the database field, the model
designer counterpart is the database administrator, who defines tables (Voc),
views (P) and keys between tables (�).

– policy administration is the task of defining the state I. The policy administrator
sets up the facts of an ac model instance, but can not define I′ directly because it
is automatically derived from I using P. According to the above example, a policy
administrator sets that physician and surgeon are roles, and is responsible
for assigning these roles to individuals. As an analogy in the database field, the
policy administrator counterpart is an end-user, whose job is to query and modify
the policy, but who is not able to modify the schema.

6.2 Model structure

In Section 2, we introduced the structure of AC = (Voc, P, �) made of three
components and we defined the major design choices we have made:

– ac models are defined as logical theories while being narrowed to decidable
fragments without negation, disjunction nor function symbols in P,

– the vocabulary is partitioned into sorts and relations in a many-sorted Fol
paradigm,

– rules (P) and constraints (�) are distinguished,
– the difference between a state I and a policy I′ is logically made explicit.

One may argue that these choices are somewhat restrictive. The administrator’s
tasks are limited to extensive policies management, i.e., to tuple management in the
ac state. It might be possible to allow them to expressed their own formulae in P or
�. However, we think this is not desirable, as this would blur the responsibilities
between designers and maintainers and would introduce higher policy checking
complexity. In such an approach, the stability of the ac models would not be guar-
anteed through the policies lifetime, in particular consistency and interoperability of
updated models.
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6.3 Fragments of logic for access control

The logical fragment of Fol we used to define P and � is quite restrictive: negation,
disjunction and function symbols are not allowed. The main argument is that we
obtain a unique and computable model of P. Computability is necessary because
the reference monitor has to answer each access request. Uniqueness for integrity
checking purposes is required, in order to avoid checking the satisfaction of � over
multiple models of P. Moreover, uniqueness may ease the understanding of intensive
policies by administrators.

Furthermore, we chose to have a more expressive framework for constraints
than for rules, by favoring existential quantif ication over negation. The main goal
is to be able to model some of the most important constraints commonly identified
for ac models, which cannot be expressed in Datalog models. Even with a quite
simple ac model (for instance, with a few sorts, relations and principles), most
of the properties given in Section 3 require existentially quantified variables (e.g.,
sessions integrity properties, restricted hierarchies, authorizations properties and
administrative prerequisites).

7 Conclusions and perspectives

In this paper, we presented a logical framework AC = (Voc, P, �) for ac models,
which relies on three abstract components. The key idea is to express and handle
ac models, policies and constraints in an homogeneous way within the very same
logic background by means of database integrity theory (not to deploy ac policies
in databases). We then showed how to use well-founded procedures in order to
enforce and check constraints, and to provide a formal trace of inferences. The
proposed framework is not universal because of the choice we made to focus on
access control constraints and to treat them as first-class citizens. It however allows
for expressing several classical models and extensions found in the literature. It also
takes into account some major recommendations that had been previously addressed
to Rbac models. Moreover, the expressivity of general classes of dependencies allows
capturing most of the ac model properties considered as fundamental.

We envision several extensions and perspectives:

– extension of the Fol subclasses, to capture new properties of models. However,
algorithms decidability and tractability should be taken into account. As an
example, it may be interesting to use some decidable subclass of tgd by imposing
some restrictions on existentially quantified variables, as it is the case for
negation in stratified-Datalog for instance,

– explore automated maintenance of databases (Chomicki and Marcinkowski
2005), and data integration (Fagin 2006) to fix non-consistent policies. Data
integration may be a fruitful perspective for policies creation expressed in
different models (Li et al. 2009),

– broadening the scope of policies. Indeed, it would be valuable to model adminis-
trative policies, which define administrator rights over ac policies. This could be
useful for instance when a huge policy requires several administrators, each of
them being allowed to handle only a part of the policy.
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– another emerging topic is usage control and privacy protection. The basic com-
ponents and definitions we presented can be used to define next generation ac
models and policies, as it has been done with Rbac models (Ni et al. 2009).

Appendix: Chase algorithm

Algorithm 1 Chase algorithm from Beeri and Vardi (1984)
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